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Abstract

A unified control theorem is presented in this paper, whose aim is to suppress the transversal
intersections of stable and unstable manifolds of homoclinic and heteroclinic orbits in the Poincarè map
embedding in system dynamics. Based on the control theorem, a primary resonant optimal control
technique (PROCT for short) is applied to a general single-dof nonlinear oscillator. The novelty of this
technique is able to obtain the unified analytical expressions of the control gain and the control parameters
for suppressing the homoclinic and heteroclinic bifurcations, where the control gain can guarantee that the
control region where the homoclinic and heteroclinic bifurcations do not occur can be enlarged as much as
possible at least cost. The technique is applied to a nonlinear oscillator with a pair of nested homoclinic and
heteroclinic orbits. By the PROCT, the transversal intersections of homoclinic and heteroclinic orbits can
be suppressed, respectively. The hopping phenomenon that there coexist two kinds of chaotic attractors of
Duffing-type and pendulum-type can be suppressed. On the contrary, if the first amplitude coefficient is
greater than the critical heteroclinic bifurcation value, then another degenerate hopping behavior of chaos
will take place again. Therefore, the phenomenon of hopping is the dominant type of chaos in this
oscillator, whose suppressing or inducing is admissible from the points of practical and theoretical view.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.

jsv.2005.02.027

ding author. Tel.: +86 10 5168 2056; fax: +86 10 5168 8433.

ress: hjcao@center.njtu.edu.cn (H. Cao).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

H. Cao et al. / Journal of Sound and Vibration 289 (2006) 229–244230
1. Introduction

There have been a lot of studies [1–7] show that the chaos resulted from homoclinic and
heteroclinic bifurcations embedding in system dynamics can be suppressed by the addition of
finite or infinite periodic excitations to a single-dof nonlinear oscillator. In particular, from
Melnikov analysis [8,9], one can theoretically find the intervals of phase shift (initial phase
difference) between the two excitations for which chaotic dynamics can be suppressed [3–5].
Recently, Lenci and Rega published a series of papers [10–12] concerning the optimal control

for homoclinic or heteroclinic bifurcations in some classic and non-smooth nonlinear oscillators,
respectively. The attention of this method proposed by Lenci and Rega is focused on choosing the
optimal excitations with a finite number of superharmonics, by which the transversal intersection
of the stable and unstable manifolds of the hilltop saddle in the Poincaré map can be avoided.
Extensive numerical simulations have confirmed the effectiveness of the theoretical predictions of
the method.
Based on the previous results, in this paper, a unified control theorem is presented for a general

single-dof nonlinear oscillator. A primary resonant optimal control technique (PROCT for short)
is proposed on the basis of Melnikov method and the phase shift between two primary resonant
excitations. The aim of this technique is to control the transversal intersections of the stable and
unstable manifolds of homoclinic and heteroclinic orbits embedding in system dynamics. The
main scenario of this technique consists in the following steps: (i) by adding the second primary
resonant excitation including a phase shift to the original system, via the Melnikov method and
the rigorous mathematical deductions, the solutions of optimization problems can be luckily
obtained, which means that the optimal amplitude coefficients as control parameters can be
expressed as functions of the critical homoclinic/heteroclinic bifurcations as well as the phase shift
in a optimal manner; (ii) once the phase shift as the original driven control parameter is chosen, a
control gain that guarantees the region where the homoclinic or heteroclinic transversal
intersections do not occur and two induced optimal control parameters are derived, and finally the
control systems can be determined; (iii) by doing so, a control region is obtained, and associated
with the parameter values in the region, the transversal intersections of the stable and unstable
manifolds of the hilltop saddle in the Poincaré map of the system can be efficiently avoided.
Compared with Lenci and Rega’s work, the main novelty of the PROCT is as follows: (i) by

only adding the second primary resonant optimal excitation, and making use of the adjustable
role played by the phase shift, the largest possible control gain can be attained at lowest cost; (ii) a
unified analytical expression of optimization solutions of amplitudes can be obtained with respect
to the suppression of homoclinic and heteroclinic bifurcations, simultaneously; (iii) using the
PROCT, due to the amplitude coefficients depending on the phase shift and the critical
homoclinic/heteroclinic bifurcation values under the harmonic excitation, they may always be
adjusted in order that the amplitude coefficients are small enough, which is admissible from the
physical and control points of view, and is also in accord with the assumption of the small
perturbation in Melnikov theory.
The PROCT is applied to a nonlinear oscillator with a pair of nested homoclinic and

heteroclinic orbits of unperturbed system. By the detailed theoretical analyses and numerical
simulations, the transversal intersections of stable and unstable manifolds of homoclinic and
heteroclinic can be successfully avoided, respectively. In addition, a novelty of this illustrative
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example is that there exist two kinds of distinct interwinding chaotic attractors when the critical
homoclinic bifurcation values are further increased to the critical heteroclinic bifurcation values,
that is Duffing-type and pendulum-type, simultaneously. By using the PROCT, the hopping
behavior of chaos occurred in this example can be suppressed, and in general can be transformed
into the quasiperiodic motions.
The rest of this paper is organized as follows: Section 2 presents the unified control theorem and

the theoretical analysis of the PROCT for a general one-dof nonlinear oscillator. Section 3 is
devoted to an illustrative example, in which a pair of nested homoclinic and heteroclinic
bifurcations can be effectively suppressed, respectively. Finally, some conclusions and comments
are given in Section 4.
2. Theoretical analysis on the primary resonant optimal control technique

A general one-dof nonlinear oscillator is considered in the following form:

_x ¼ y,

_y ¼ � gðxÞ � dhðxÞy þ g1 cosðotÞ þ g2 cosðot þCÞ, ð1Þ

where gðxÞ is a potential function, dhðxÞy represents a weak damping term, with a non-
linear damping function hðxÞ and a parameter d denoting the damping intensity, g1 cosðotÞ is
named the harmonic excitation, o is a forced frequency, and g2 cosðot þCÞ is called the second
primary resonant periodic excitation, and C is a phase shift between the first harmonic excitation
and the second primary resonant period excitation. In addition, d, g1 and g2 are small enough
parameter.
It can be easily seen that the Duffing oscillator, the van der Pol oscillator, the Duffing–Van del

Pol oscillator, and the pendulum equation are all special cases of Eq. (1).
At first, the following hypotheses and properties are presented concerning the general one-dof

nonlinear oscillator (1):
(i) Suppose that gð�xÞ ¼ �gðxÞ and hð�xÞ ¼ hðxÞ;

(ii) The unperturbed and undamped system of Eq. (1) has one pair of homoclinic orbits Gr;l ¼

ðxr;l
0 ðtÞ; yr;l

0 ðtÞÞ (or one pair of heteroclinic orbits Gup;low ¼ ðx
up;low
0 ðtÞ; yup;low

0 ðtÞÞ) connecting a

hyperbolic saddle point S0
0 (or a pair of saddle points S0

�1 and S0
1), where the superscripts ‘‘r’’, and

‘‘l’’ denote the right, left homoclinic orbits of unperturbed system, and ‘‘up’’, and ‘‘low’’ denote
the upper and the lower heteroclinic orbits of unperturbed system, respectively.

(iii) xr;l
0 ð�tÞ ¼ xr;l

0 ðtÞ, yr;l
0 ð�tÞ ¼ �yr;l

0 ðtÞ,

(iv) x
up;low
0 ð�tÞ ¼ x

up;low
0 ðtÞ, y

up;low
0 ð�tÞ ¼ y

up;low
0 ðtÞ.

(v) Eq. (1) is invariant under the transformation x ! �x, t ! t þ p=o, which means that there
exists a pair of symmetric homoclinic orbits or a pair of symmetric heteroclinic orbits of
unperturbed system of Eq. (1).
Firstly, for the homoclinic case, Melnikov’s theory [8,9] guarantees that, in the small enough

perturbation, there exist homoclinic intersections of the stable and unstable manifolds in the

Poincaré map of the system if and only if Mr;lðt0Þ have a simple zero for some t0. Then, Melnikov
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functions for Eq. (1) are as follows:

Mr;lðt0Þ ¼

Z 1

�1

yr;l
0 ðtÞf�dhðxr;l

0 ðtÞÞyr;l
0 ðtÞ

	 ðg1 cosoðt þ t0Þ þ g2 cosðoðt þ t0Þ þCÞÞgdt

¼ � d
Z 1

�1

hðxr;l
0 ðtÞÞ½yr;l

0 ðtÞ�2 dt 	 g1 sinðot0Þ

Z 1

�1

yr;l
0 ðtÞ sinðotÞdt

�

þ g2 sinðot0Þ

Z 1

�1

yr;l
0 ðtÞ sinðot þCÞdt

�
. ð2Þ

For simplicity, some notations are introduced as follows

Br;l ¼

Z 1

�1

h½xr;l
0 ðtÞ�½yr;l

0 ðtÞ�2 dt,

Ir;l
1 ðoÞ ¼

Z 1

�1

yr;l
0 ðtÞ sinðotÞdt,

hr;l
2 ðoÞ ¼

gr;l
2;cr

gr;l
1;cr

,

gr;l
1;crhðoÞ ¼

dBr;l

I r;l
1 ðoÞ

, ð3Þ

where gr;l
1;crhðoÞ represent the critical right/left homoclinic bifurcations in the action of simply a

harmonic excitation. gr;l
1;cr and gr;l

2;cr denote the critical right/left homoclinic bifurcations under the

action of the two primary resonant excitations. In addition, hr;l
2 ðoÞ measure the effect of the

second primary resonant harmonic corrections on the Melnikov’s functions Mr;lðt0Þ, respectively.
Then Eq. (2) becomes

Mr;lðmÞ ¼ �dB 1	
g1

gr;l
1;crhðoÞ

hr;l
ðmÞ

" #
, (4)

where

hr;l
ðmÞ ¼ sinðmÞ þ hr;l

2 sinðm þCÞ, (5)

and m ¼ ot0 (m 2 ½0; 2p�). hðmÞ is 2p-periodic and has zero mean value, and the effects of the

second primary resonant excitation in the Melnikov function are governed by the parameters hr;l
2

and C.
Similarly, for the heteroclinic case, in order to avoid the unnecessary repetition, the same

notations given in Eq. (3) are still used, and the only difference is to change the superscript ‘‘r’’
and ‘‘l’’ into ‘‘up’’ and ‘‘low’’ denoting the upper and lower heteroclinic orbits. In addition, the
superscripts ‘‘hom’’ and ‘‘hete’’ denote the homoclinic and heteroclinic orbit, respectively.
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Melnikov functions with respect to the heteroclinic case for Eq. (1) are as follows:

Mup;lowðt0Þ ¼ �dB 1	
g1

gup;low1;crh ðoÞ
hup;low

ðmÞ

" #
, (6)

where

hup;low
ðmÞ ¼ cosðmÞ þ h

up;low
2 cosðm þCÞ. (7)

The following definition is given:

Definition 1. Let

Mr :¼�minm2½0;2p� fh
r
ðmÞg; Ml :¼maxm2½0;2p� fh

l
ðmÞg,

Mup :¼�minm2½0;2p� fh
up
ðmÞg; M low :¼maxm2½0;2p� fh

low
ðmÞg,

Gr :¼
gr
1;crhðoÞ

gr
1ðoÞ

¼
1

Mr ; Gl :¼
gl
1;crhðoÞ

gl
1ðoÞ

¼
1

Ml
,

Gup :¼
gup1;crhðoÞ

gup1 ðoÞ
¼

1

Mup ; Glow :¼
glow1;crhðoÞ

glow1 ðoÞ
¼

1

M low
, ð8Þ

where Gr;l and Gup;low are named the control gain.

Due to the symmetric property (v), it is easy to prove the following conclusion:

Proposition 1.

Mr ¼ Ml :¼Mhom; Mup ¼ M low :¼Mhete,

Gr ¼ Gl :¼Ghom; Gup ¼ Glow :¼Ghete.

The control gain G can measure the increment of critical threshold with respect to the reference
harmonic excitation after the second excitation is added. Seen from Eq. (8), the smaller the Mhom and
Mhete, the larger the control gain Ghom and Ghete. Therefore, once the Mhom and Mhete are determined,
then the control gain Ghom and Ghete are determined too. Finally, the control (or saved) region above
ghom;hete
1;crh ðoÞ and below ghom;hete

1;cr ðoÞ can be obtained. Therefore, corresponding to the control
parameters in the control region, the transverse intersections of the stable and unstable manifolds of
the hilltop saddle in the Poincaré map of the system can be successfully avoided in theory.
In the following discussion, the key of the PROCT is to solve the following optimization

problem:

2.1. Maximizing G by varying h2 and C of hðmÞ as given in Eqs. (5) and (7)

The solutions of optimization problem can be obtained by the following unified control
theorem:

Theorem. When h2 ¼ � cosðCÞ, the function hðmÞ given in Eqs. (5) and (7) can attain its maximum
j sinðCÞj, and the following formulae holds:

Mhom ¼ Mhete ¼: M ¼ j sinðCÞj, (9)

and the control gain is G ¼ 1=j sinðCÞj, where C is confined in the interval of ð0; p=2Þ.
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Proof. Firstly, for the homoclinic case, from Eq. (5), it is easy to know that when

sin2ðmÞ ¼
ð1þ h2 cosCÞ

2

ð1þ h2 cosCÞ
2
þ ðh2 sinCÞ

2
,

cos2ðmÞ ¼
ðh2 sinCÞ

2

ð1þ h2 cosCÞ
2
þ ðh2 sinCÞ

2
, ð10Þ

dh=dm ¼ 0 has zero points. Substituting Eq. (10) into Eq. (5), the following inequality

hðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ cosCÞ

2
þ sin2C

q
pj sinCj, (11)

holds if and only if h2 ¼ � cosC.
Similarly, for the heteroclinic case, dh=dm ¼ 0 has zero points when two equations given in

Eq. (10) are satisfied. Substituting Eq. (10) into Eq. (7), one has

hðmÞ ¼
ð1þ h2 cosCÞ

2
� ðh2 sinCÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ h2 cosCÞ

2
þ ðh2 sinCÞ

2
q , (12)

and the following inequality

jhðmÞjp
ð1þ h2 cosCÞ

2
þ ðh2 sinCÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ h2 cosCÞ

2
þ ðh2 sinCÞ

2
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ cosCÞ

2
þ sin2C

q
pj sinCj, (13)

holds if and only if h2 ¼ � cosC. &

Once the control gain G and the coefficient h2 are obtained, by using the third and the fourth
equations given in Eq. (3), the optimal control amplitude coefficients are derived by

ghom;hete
1;cr ¼ ghom;hete

1;crh ðoÞG ¼
1

j sinðCÞj
ghom;hete
1;crh ðoÞ4ghom;hete

1;crh ,

ghom;hete
2;cr ¼ ghom;hete

1;cr h2 ¼ � cosðCÞghom;hete
1;cr . ð14Þ

As can be seen from the first equation of Eq. (14), due to the effect of the control gain G, the

first optimal control amplitude coefficient ghom;hete
1;cr will be increased. Subsequently, the zone of

transversal intersection of homoclinic and heteroclinic manifolds will be decreased as much as
possible. Substituting Eq. (14) into Eq. (1), the optimal control system for suppressing homoclinic
and heteroclinic bifurcations is

_x ¼ y,

_y ¼ �gðxÞ � dhðxÞy þ ghom;hete
1;cr cosðotÞ þ ghom;hete

2;cr cosðot þCÞ. ð15Þ
3. An illustrative example

To show the effectiveness of the primary resonant optimal control technique and the agreement
between the theoretical analyses and the numerical simulations, in this section, consider an
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illustrative nonlinear oscillator with a pair of nested homoclinic and heteroclinic orbits of
unperturbed system, simultaneously, whose dimensionless equation is below

_x ¼ y,

_y ¼ sinxðcos x � a2Þ � dy þ g1 cosðotÞ þ g2 cosðot þCÞ, ð16Þ

where a small parameter 0o�51 is introduced, and assume that d ¼ Oð�Þ, and gj ¼ Oð�Þ ð j ¼ 1; 2Þ

but a;o ¼ Oð1Þ. Here in order to guarantee that there exist a nested homoclinic and heteroclinic
orbits simultaneously, a is assumed to be satisfied the condition jajo1. Physically, a is the radius
of the wire, d represents the damping coefficient, gj the amplitude of the forcing corresponding to

different periodic excitations, o the frequency.
Eq. (16) is in fact a specific case of the following dimensionless equation:

_x ¼ y,

_y ¼ sinxðcos x � a2Þ � dy þ bdð1� cos 2xÞy þ g1 cosðotÞ. ð17Þ

An important result obtained by Dabbs and Smith [13] was: for Eq. (17), two distinct types of
horseshoes, namely Duffing oscillators and pendulum type are shown to coexist. Some special
parameter relationships predict that both types of horseshoes coexist but do not interact despite
very large forcing amplitudes.
Here, for simplicity, the main interest of this paper is to suppress the homoclinic and

heteroclinic bifurcation embedding in system dynamics respectively, so only a damping term dy is
considered in Eq. (16).
System (16) is invariant under the transformation x ! �x, t ! t þ p=o which guarantees all

homoclinic and heteroclinic orbits of unperturbed system are symmetric.

3.1. Undamping and unforced system of Eq. (16)

In the forthcoming part of this subsection, all parameter values are assumed as a ¼ 0:5, and
d ¼ 0:1. When d ¼ 0 and gj ¼ 0 ðj ¼ 1; 2Þ, the undamping and unforced system, that is, the

unperturbed system of Eq. (16) is

_x ¼ y,

_y ¼ sinxðcos x � a2Þ. ð18Þ

The unperturbed system (18) corresponds to an integrable Hamiltonian system with the
potential function

VðxÞ ¼ �1
2
ðsinxÞ2 � a2 cos x, (19)

and the Hamiltonian function (energy)

Hðx; yÞ ¼
y2

2
�

1

2
ðsin xÞ2 � a2 cosx. (20)

From Eqs. (18)–(20), the unperturbed system (18) has five equilibrium points when x 2 ½�4; 4�:

two centers at C0
�1ð�1:31812; 0Þ and C0

1ð1:31812; 0Þ, and three hyperbolic saddle points at

S0
�1ð�p; 0Þ, S0

0ð0; 0Þ, and S0
1ðp; 0Þ. In addition, in order to compute Melnikov functions in the
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subsequent parts, three turning points T0
�1ð�2:0944; 0Þ, T0

1ð2:0944; 0Þ, and T0
0ð0; 1Þ are given. The

saddle point S0
0 is connected to itself by two symmetric homoclinic orbits Gr;l

0 ¼ ðxr;l
0 ðtÞ; yr;l

0 ðtÞÞ, and

the other saddle points S0
�1, S0

1 are connected by two symmetric heteroclinic orbits Gup;low
0 ¼

ðx
up;low
0 ðtÞ; yup;low0 ðtÞÞ.

The oscillation frequency is or;l
0 ¼ 0:9682 occurred in twin-well potential wells, respectively. In

this paper, only the primary resonant condition o ’ or;l
0 þ s is considered, where s is a small

enough parameter.
For a clear illustration, it is useful to present computational results of the phase space of

unperturbed system (18) shown in Fig. 1 within the region �4pxp4 and �1:5pyp1:5, which is
only a restricted portion by cutting the cylindrical space. Seen from Fig. 1, there exist two kinds of
oscillations, one is the oscillation within the twin-well potential wells, respectively; one is the

oscillation between the homoclinic orbits Gr;l
0 and the heteroclinic orbits Gup;low

0 . In addition, there

still exists another rotation outside the heteroclinic orbits Gup;low
0 .
3.2. Melnikov analysis for Eq. (16)

By Melnikov analysis given in Section 2, Fig. 2 shows the critical values for homoclinic and

heteroclinic bifurcations gr;l
1;crh, g

r;l
1;cr, and gup;low1;crh , gup;low1;cr as functions of frequency o under the action

of a harmonic excitation, and a harmonic and a primary resonant excitation, respectively, in
which the solid curve corresponds to the homoclinic bifurcation, and the dashed curve denotes the
heteroclinic bifurcation. Comparison between them, as the frequency o is in the interval
ð0; 0:2408Þ, the homoclinic bifurcation values are larger than the heteroclinic bifurcation value.
While, there exist one critical homoclinic bifurcation g1;crh ¼ 0:1046 at o ¼ 0:2408 such that the
-4 -3 -2 -1 0 1 2 3 4
-1.5

-1

-0.5

0.5

1

1.5

x

y 0
 S

-1
0

T
-1

0

C
-1
0

S
0
0

C
1

0 T
1

0
S

1

0

T
0

0

Fig. 1. The unperturbed phase space when a ¼ 0:5.
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Fig. 2. Homoclinic bifurcation curves ghom1;crh and ghom1;cr are shown in solid curves; heteroclinic bifurcation curves ghete1;crh and

ghete1;cr are shown in dashed curves with respect to C ¼ p=6 and C ¼ p=20, respectively.
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critical homoclinic and heteroclinic bifurcations are the same, and when 0:2408oop1, the critical
heteroclinic bifurcation values are larger than the critical homoclinic bifurcation values.
If the phase shift C is fixed at p=6 and p=20, respectively, and the primary optimal control

method is employed, then the corresponding control gain G is 2 and 6:3925, respectively. It means
the critical homoclinic bifurcation values will be increased, which means that the control regions
where the homoclinic transversal intersections do not occur have been enlarged. As can be seen in
Fig. 2, in which there are three homoclinic bifurcation curves shown by solid curves, while there
are also three heteroclinic bifurcation curve given by dashed curves.
In the following numerical simulation, when the frequency o is fixed as 0:8, and the

corresponding forced amplitude coefficients occurred in the critical homoclinic and heteroclinic

bifurcation curves are Að0:8; ghom1;crh ¼ 0:082Þ, Bð0:8; 2ghom1;crh ¼ 0:1640Þ, Cð0:8; 6:3925ghom1;crh ¼ 0:5142Þ,

Dð0:8; ghete1;crh ¼ 0:3137Þ, Eð0:8; 2ghete1;crh ¼ 0:6274Þ, and Fð0:8; 6:3925ghete1;crh ¼ 2:0053Þ, respectively.
3.3. Suppressing homoclinic bifurcations

According to Theorem 1 given in Section 2, in this subsection, the main aim is to compute
stable and unstable manifolds of homoclinic orbits and heteroclinic orbits together with other
indicators in order to verify the theoretical predictions, in which the perturbed saddles are
determined by numerically integrating the perturbed system (16) using Simpson’s formula, while
the stable and unstable manifolds are detected by a numerical algorithm from [14] based on
forward and backward iterations of the unstable and stable eigenvectors, respectively. In the
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following numerical simulations, the dark curve represents the stable manifold and the gray curve
denotes the unstable manifold.
For simplicity, only a case is considered, that is, the phase shift C ¼ p=6 is taken, then the

control gain is given by G ¼ 1=j sinCj ¼ 2. The main numerical results are listed as below:

(i) Corresponding to the only critical parameter values ghom1;cr ¼ 2� 0:082 ¼ 0:16404ghom1;crh ¼

0:082 but ghom1;cr ¼ 0:1640oghete1;cr ¼ 0:6274 in the homoclinic case, the primary resonant optimal

control method predicts that the left and right homoclinic manifolds should be in the intersection
state, but no such kind of intersection occurred in the heteroclinic manifolds. Fig. 3(a) shows that
-6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

a 
b 

(a)

-6 -4 -2 0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(b)

Fig. 3. o ¼ 0:8, a ¼ 0:5, d ¼ 0:1, ghom1 ¼ 0:1640. (a) Numerically computed stable and unstable manifolds; (b) cross-

well Duffing-type chaotic attractor.
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the numerical results are in good agreement with the theoretical analysis results associated to the
three fixed saddle points situated at S�1ð�3:2282; 0:0029Þ, S0ð�0:1176; 0:0054Þ, and
S1ð3:0550; 0:0029Þ, in which the stable and unstable manifolds of homoclinic orbits at least
intersect at points a and b. In addition, corresponding to the same parameters given in Fig. 3(a),
Fig. 3(b) shows that there exists only a Duffing-type cross-well chaotic attractor resulting from the
homoclinic tangles.
(ii) If the second primary optimal excitation is added to the chaotic system for suppressing the

interior homoclinic tangles shown in Fig. 3(a), and the control parameter values are ghom1;cr ¼ 0:1640

and ghom2 ¼ �0:1420 associated to the three fixed saddle points situated at S�1ð�3:1648;�0:0293Þ,
S0ð�0:0323;�0:0394Þ, and S1ð3:1183;�0:0293Þ. Then, the left and right homoclinic manifolds
should be in the tangency state. Seen from Fig. 4(a), the stable and unstable manifolds of
homoclinic orbits are only in the tangency state at points a and b, but a transversal intersection
takes place between an unstable manifold of heteroclinic orbit and a stable manifold of
homoclinic orbit at point c. The observation demonstrates the suppression for homoclinic
transversal intersection occurred in Fig. 3(a) has taken effect, and no such effect for heteroclinic
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Fig. 4. For C ¼ p=6, o ¼ 0:8, a ¼ 0:5, d ¼ 0:1, and G ¼ 2. (a) Numerically computed stable and unstable manifolds

when ghom1 ¼ 0:1640, ghom2 ¼ �0:1420; (b) the blow-up for homoclinic manifolds given in (a); (c) numerically computed

stable and unstable manifolds when ghom1 ¼ 0:15, ghom2 ¼ �0:1299; (d) numerically computed stable and unstable

manifolds when ghom1 ¼ 0:18, ghom2 ¼ �0:1559.
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manifolds. For the sake of clarity, the blow-up of the homoclinic tangency between the stable and
unstable manifolds of homoclinic orbits is given in Fig. 4(b).

(iii) If the first amplitude is just slightly less than the critical value, e.g., ghom1 ¼ 0:15

ðoghom1;cr ¼ 0:1640) and ghom2 ¼ �0:1299 associated to the three fixed saddle points situated at

S�1ð�3:1629;�0:0268Þ, S0ð�0:0296;�0:0360Þ, and S1ð3:1203;�0:0268Þ, then the stable and
unstable manifolds of homoclinic orbits will be detached as partially shown in Fig. 4(c). But, it is
noted that there still exists a transversal intersection between an unstable manifold of heteroclinic
orbit and a stable manifold of homoclinic orbit at point a.
(iv) If one takes the first amplitude just slightly larger than the critical value, e.g., g1 ¼ 0:18

ð4ghom1;crh ¼ 0:1640Þ and g2 ¼ �0:1559 associated to the three fixed saddle points situated at

S�1ð�3:1671;�0:0321Þ, S0ð�0:0355;�0:0432Þ, and S1ð3:1161;�0:0321Þ, then the stable and
unstable manifolds of homoclinic orbits at least intersect at points a, b, and c shown in Fig. 4(d).
At the same time, an unstable manifold of heteroclinic orbit and a stable manifold of homoclinic
orbit intersect at point d.

Remark. It is noted that the suppression for homoclinic transversal intersections is only a kind of
local control instead of the global control since there exist still transversal intersections resulting
from the interaction between the interior homoclinic orbits and the outer heteroclinic orbits.
3.4. Suppressing heteroclinic bifurcations

In this subsection, the attention is paid on the suppression for heteroclinic bifurcations using
the PROCT presented in this paper. Also, the phase shift is taken as C ¼ p=6 as that given in
Section 3.3. The main results are listed as follows:

(i) When only a critical parameter value ghete1 ¼ 2� 0:3137 ¼ 0:62744ghete1;crh ¼ 0:3137 is taken in

the heteroclinic case associated to the three fixed saddle points situated at S�1ð�3:4730; 0:0112Þ,
S0ð�0:4499; 0:0207Þ, and S1ð2:8102; 0:0112Þ, the PROCT predicts that the left and right
heteroclinic manifolds should be in the tangent state, while since the critical heteroclinic
bifurcation is greater than the critical homoclinic bifurcation, the interior stable and unstable
manifolds of homoclinic orbits should be in the transversal intersection state in theory. Fig. 5(a)
shows that the numerical results are in good agreement with the theoretical analysis results, in
which the homoclinic tangles, the heteroclinic tangles, and the interwinding homoclinic tangles
and heteroclinic tangles take place, which means that there exists a kind of hopping phenomenon
of chaos. This result is verified by the plot of strange chaotic attractor given in Fig. 5(b), in which
there exist two kinds of basic chaotic attractors, that is Duffing-type and pendulum-type. In
addition, two kinds of chaotic attractors interact each other forming a complex compoundable
chaotic attractor.
(ii) If the second primary optimal excitation is added to the chaotic system shown in Fig. 5(a),

then the control parameter values are ghete1 ¼ 0:6274 and ghete2 ¼ �0:5433 associated to the

three fixed saddle points situated at S�1ð�3:2305;�0:1120Þ, S0ð�0:1237;�0:1506Þ, and
S1ð3:0527;�0:1120Þ, and the left and right heteroclinic manifolds should be in the tangency
state in theory. The numerical simulation given in Fig. 5(c) demonstrates that no transversal
intersections occur between stable and unstable manifolds of heteroclinic orbit besides a stable
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Fig. 5. C ¼ p=6, a ¼ 0:5, d ¼ 0:1, o ¼ 0:8, and G ¼ 2. (a) Stable and unstable manifolds for ghete1 ¼ 0:6274; (b)

interwinding Duffing-type and pendulum-type chaotic attractor for ghete1 ¼ 0:6274; (c) stable and unstable manifolds for

ghete1 ¼ 0:6274, ghete2 ¼ �0:5433; (d) three confined chaotic attractors for ghete1 ¼ 0:6274, ghete2 ¼ �0:5433; (e) stable and

unstable manifolds for ghete1 ¼ 0:6, ghete2 ¼ �0:5196; (f) quasiperiodic motions for ghete1 ¼ 0:6, ghete2 ¼ �0:5196; (g) stable
and unstable manifolds for ghete1 ¼ 0:7, ghete2 ¼ �0:6062; (h) degenerate double Duffing-type cross-well chaotic attractor

for ghete1 ¼ 0:7, ghete2 ¼ �0:6062.
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manifold of left heteroclinic orbit is only in tangent state with an unstable manifold of right

heteroclinic orbits at point a. In addition, since the first amplitude coefficient ghete1 ¼ 0:6274 is

largely greater than the critical homoclinic bifurcation ghom1 ¼ 0:1640, seen from Fig. 5(c), there

exits very strong transversal intersections between the homoclinic orbits and the homoclinic
orbits, as well as the homoclinic orbits and the heteroclinic orbits. That is to say, the suppression
is only valid for the heteroclinic bifurcation but it is invalid for the homoclinic bifurcation and the
intersection between the homoclinic bifurcation and the heteroclinic bifurcation. But, it is noted
that, due to the action played by the PROCT, seen from Fig. 5(d), there exist three confined
chaotic attractor occurred in the left, middle, and right sides of phase space plane, respectively.
It demonstrates that the hopping phenomenon occurred in Fig. 5(b) has been suppressed in
a way.

(iii) If the first amplitude is just slightly less than the critical value, e.g., ghete1 ¼ 0:6

ðoghete1 ¼ 0:6274) and ghete2 ¼ �0:5196 associated to the three fixed saddle points situated at

S�1ð�3:2266;�0:1071Þ, S0ð�0:1183;�0:1441Þ, and S1ð3:0566;�0:1071Þ, then the stable and
unstable manifolds of heteroclinic orbits will be detached as partially in theory. This prediction
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Fig. 5. (Continued)
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has been confirmed by the numerical results shown in Fig. 5(e), in which the stable and unstable
manifolds have been detached, while the stable and unstable manifolds of interior homoclinic
orbits are still in the transversal intersection state. There have been no such kind of interaction
between the outer heteroclinic orbit and the interior homoclinic orbit. In addition, seen from
Fig. 5(f), there exist three quasiperiodic motions in the left, middle, and right sides of phase space.
(iv) If one takes the first amplitude just slightly larger than the critical value, e.g., g1 ¼ 0:7

ð4ghete1;crh ¼ 0:8274Þ and g2 ¼ �0:6062 associated to the three fixed saddle points situated at

S�1ð�3:2408;�0:1249Þ, S0ð�0:1380;�0:1681Þ, and S1ð3:0424;�0:1249Þ, then the numerical result
is shown in Fig. 5(g), in which, on the one hand, the intensity of homoclinic intersections is a little
weaker than those dynamics shown in Fig. 5(a), and on the other hand, an unstable manifold of
the left heteroclinic orbit and a stable manifold of the right heteroclinic orbit at least intersect at
points a and b. In addition, a stable manifold of the right homoclinic orbit and an unstable
manifold of the right heteroclinic orbit at least intersect at points c and d. Fig. 5(h) shows a
complicated hopping behavior of cross-well chaotic attractor occurred in the whole phase space,
which is a mixture resulting from two interwind Duffing-type chaotic attractors.
4. Conclusions

In this paper, a unified control theorem is presented. The main aim is to suppress the transversal
intersections of stable and unstable manifolds of homoclinic and heteroclinic orbits in the
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Poincarè map embedding in system dynamics. According to the control theorem, a primary
resonant optimal control technique is applied to a general single-dof nonlinear oscillator.
The novelty of this paper is to obtain a unified analytical expression for suppressing the

homoclinic and heteroclinic bifurcations. The unified theorem demonstrate that by making use of
the phase shift C including the second primary resonant excitation as a original driven control
parameter, the control gain G can attain 1=j sinðCÞj, and limC!0 G ¼ 1 in theory, which will lead
to the control region where the homoclinic and heteroclinic bifurcations do not occur can be
enlarged as much as possible. Corresponding to those parameters in the control region, the
transversal intersections of stable and unstable manifolds of homoclinic and heteroclinic orbits
can be successfully avoided.
The technique is applied to a nonlinear oscillator with a pair of nested homoclinic and heteroclinic

orbits. By the detailed qualitative analysis and the numerical simulations, the homoclinic and
heteroclinic transversal intersections can be suppressed, respectively. In particular, the control scenario
discussed in this paper demonstrates that if there exists a pair of homoclinic and heteroclinic orbits,
the first choice is to control the homoclinic bifurcation since in general the critical homoclinic
bifurcation values are less than the critical heteroclinic bifurcation values. In practice, if the
homoclinic transversal intersections can be suppressed, then all transversal intersection occurred in the
whole phase space can be controlled, which means that it is a global control strategy.
For the illustrative example discussed in this paper, it is noted that there exists only a kind of

chaotic attractor named the Duffing-type only when the homoclinic bifurcations occur. But, if the
critical homoclinic bifurcation values are further increased to the critical heteroclinic bifurcation
values, then there exist two kinds of interwinding chaotic attractors, that is Duffing-type and
pendulum-type, simultaneously. This is a kind of hopping phenomenon. Compared with other
hopping behaviors of chaos [13], the hopping behavior shown in this paper is a kind of
phenomenon of homoclinic and heteroclinic manifolds intersections. In fact, according to the
work of Shaw and Wiggins [15], the kind of hopping phenomenon is rather rare, and the non-
interacting chaotic homoclinic and heteroclinic attractors are commonplace.
By using the PROCT proposed in this paper, the hopping behavior of chaos occurred in this

paper can be suppressed, and in general it can be transformed into the quasiperiodic motions. On
the contrary, if the first amplitude coefficient is greater than the critical heteroclinic bifurcation
value, the hopping behavior of chaos will take place again. Therefore, for the example discussed in
this paper, the phenomenon of hopping is the dominant type of chaos, whose suppressing or
inducing is admissible from the point of practical and theoretical view.
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